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PENALTY FUNCTIONS AND BOUNDED
PHASE COORDINATE CONTROL®

+

By D. L. Russell

ABSTRACT RS ¥

The use of two different kinds of penalty functions to obtain
approximate and, in the limit, exact solutions to the bounded
phase coordinate optimal control problem is considered. The first
type of penalty function assumes small values within the phase
constraint and large values outside while the second type 1is de-
fined only within the phase constralnts, assuming small values
away from the constraint boundary but increasing to infinity as that
boundary is approached.

The bounded, or constrained phase problem is replaced by a
new problem in which the constraints are formally removed but the
cost functional is augmented by adding a penalty function of one of
the above types. Solutions to this new problem are shown to exist.
They are seen,under suitable hypotheses, to be approximations to
the solutions of the original constrained problem in the sense that
as the severity of the penalty imposed increases without limit
these unconstrained solutions converge, in an appropriate sense,

to solutions of the constrained problem. ,42z6411/

* Prepared under contract NASw-563 for the NASA

i Research Consultant, Minneapolls-Honeywell Regulator Company,
Minneapollis, Minnesota '



INTRODUCTION

Synthesis of controllers that satisfy an optimization criterion
and which do not force the system response trajectories beyond
prescribed boundaries in phase space 1s a difficult problem that
has not been satisfactorily resolved. Although direct approaches
to the problem have met with some success, it l1s proper to consider
other methods.

Instead of trying to develop a synthesis procedure which
determines an optimal trajectory that does not exceed the phase
constraint, an unconstrained problem is consldered wherein the
original cost functlional ls augmented by a non-negative penalty
function which sharply increases the cost assoclated wlth trajectories
lying outside the phase constraints. By using sequences of cost
functionals with more and more severe penalty functions, it might
be expected that a desired constrained phase solution could be
approximated to any desired degree of accuracy..

This document deals only with the existence of solutions and
with thelr convergence properties. Necessity, sufficiency,and
uniqueness considerations as well as computational methods are
subjects for later investigations.

In the PROBLEM STATEMENT which follows, two different kinds of
penalty functions are defined and the optimization problem is
posed. OPTIMIZATION WITH A PENALTY FUNCTION establishes the
existence of at least one controller that minimizes a cost
functional whose integrand has been modified by addition of a

penalty function. This result is then used in the existence and
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convergence result proved in OPTIMIZATION WITH SEQUENCES OF
PENALTY FUNCTIONS. Results of this document are then summarized
in the CONCLUSIONS.

PROBLEM STATEMENT
The optimization problem 1s posed and two types of penalty
functions are defined.

THE OPTIMIZATION PROBLEM The system of differential equations

m
= gt (t,x) + = hy (t,x)ud (t) (1')
=1

or, in vector notation
x = g(t,x) + H(t,x) u(t) (1)
is considered. Here x and u are n and m dimensional vectors,
respectively, while H is an nxm_matrix.gi(t,x) and h%(t,x) are
continuous and have continuous first order partial derivatives
with respect to x in I x G. The existence is assumed of
(a) a closed constraint set GCER possessing a non-empty
interior,
(b) a compact, convex subset QCE™ possessing at least
two points,
(c) a compact subinterval I of E! with non-zero length
(d) a compact target subset T(t) of Int(G) varying continuously
with t € I, and a point x € Int(G) such that for
t eI, xg £ T(t).
(e) a non-empty set /\ of measurable vector functions u defined
on various intervals [to,tl] < I such that the unique

solutions x(t) of (1) with x(to) = X

o corresponding to
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these u(t) obey
(1) x(ty) e T(ty),
(1i1) x(t) ¢ G for t ¢ [to,tl],

(f) a cost functional
tl o m o) J
clu) = J {g%(t,x) + = ng(t,x)u (t))at (2)
t - J=1
o
defined for each u in As. Here go and h° are continuous in

J
IxG.
PROBLEM Find T e/\ such that for all u e/, c(u) < c(u).
If in (a) the set G is taken to be E?, the problem will be
called unconstrained. Otherwise it will be said that the
optimization problem i1s constrained.

A solution to this problem will be sought by use of sequences

of penalty functions.

DEFINITION 1. The sequence of functions {pi(x)l 1s said to be ¢

sequence of penalty functions of the first kind for G in case:

(a) There is an open set O with G—O<E" such that for each

i= 1,2,°°.pi(x) i1s defined and continuous on O and there assumes

non-negative, real values.

(b) Given any compact set DcInt(G), 1im pi(x) = 0 uniformly
1->00

for x € D.

(¢) Given any compact set DcExt(a)/ 0, lim pi(x) = + o0 uniformly

for x € D. e

Usually the open set O will be taken to be E",
DEFINITION 2. The sequence of functions {bi(x)} is said to be a

sequence of penalty functions of the second kind for G in case:

(a) For each i = 1,2,..,pi(x) is defined, continuous, and assumes
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real, non-negative values in Int(G).

(b) Given any compact set DT Int(G), 1lim p,;{x) = O uniformly for
i->o0

x € D,

(c) Let oG denote the boundary of G. Then for every

i=1,2,... lim pi(x) = + ®, uniformly, provided x € Int(G).
dis(x,0G)—>0

(d) Let x(t) be a continuous n-vector valued function in class
¢l [0,1] with x(t) € Int(G) for t e [0,1) and x(1) € 3G. Then
for each i = 1,2,..., flpi(x(t))dt =+ oo, Here Ci[O,l] denotes
the class of n-vector Salued functions on [0,1] each of which
is absolutely continuous on [0,1] and possesses a uniform bound

on its derivative.

OPTIMIZATION WITH A PENALTY FUNCTION

It is the purpose of this document to study means whereby
solutions to the constrained optimization problem may be approximated.
It is thus necessary to begin by defining what is here meant by
an approximation procedure.

Let the initial point X, be fixed and a (possibly) time-varying
target set T(t) be defined. ILet x(t) and u(t) be defined on
[to,tl]ézI with x(t) the response to the control u(t) via equation
(1), x(to) = X_ and x(tl) € T(tl). Let xk(t), uk(t) be similarly

o
defined on intervals [tok’ tlk]g;I with xk(tok) = xo,xk(tlk) € T(tlk).

DEFINITION 3. The pairs of functions (uk(t), xk(t)) will be said

to approximate the pair (u(t), x(t)) in case:

(a) o fox = For MM Ty =Ty
(b) For each t e (t_,t,), 1lim x,(t) = x(t). (Note that
0’71 K—>00 k

Xk(t) is well defined if k is sufficiently large.)
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(¢c) Defining u(t) and uy(t) to be zero at points t e€ I where
they are previously undefined, 1lim u, = u in the weak topology
of L2(I). Koo

An approximation procedure for (u(t),x(t)) is any procedure
whereby a sequence {(uk(t), xk(t))} satisfying the above requirements
may be obtained. It wlill be seen below the penalty functlion methods
provide Just such a procedure.

The following lemma 1s essential to the method to be des-
cribed.
IEMMA 1. Let the optimization problem be defined as above. For
each natural number k let Uy eZX and let Xy be the response to U
via equation (1), both functions being defined on an interval
[0k tlk]Q;I, where xk(tok) = x, and xk(tlk) e T(ty, ) 1s the first
intersection of the trajectory x, with the target T(t). Assume
that there is a positive number B such that ka(t)H < B,
t € [tok’ tlk], for each k. Then there is a subsequence of the
pairs uk, xk, which we continue to call {uk, xk}, with the
properties

(a) 1im t., =t_, 1im tig = t1- tootp € I and t < t.

k->00 k—>00
() u, converges to a function u er, the convergence being in

ok o’
the weak topology of L2(I).

(¢) Letting x(t) denote the response to u(t) via equation (1),

lim x,(t) = x(t) for each t e (t »t1), where [t ,tll is the domain
kK—>® °© ©

of definition of x and u, as already indicated. Thils convergence

is uniform in every closed subset of (to,tl).

(d) 1im C(uk) = C(u).
k—>00
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PROOF: The proof of this lemma is due to Lee and Markus (reference 1),
except for the stated uniform convergence. Since the Xy and x
obey (1) and are thereby absolutely continuous, and since Mxkﬁ
is uniformly bounded by hypothesis, it may be conqluded that ik
and i are ﬁniformly bounded. Hence the stated uniform convergence
follows from Lemma 2 which follows immediately.
IEMMA 2. Let {fn(t)} be a sequence of absolutely continuous
functions converging pointwise on the compact interval 1 to the
absolutely continuous function f(t). If there exists a positive
number B such that

(a) 1£7(£)] < B a.e.,

(b) Ef/n(t)l < B a.e., for each n,
then {fn(t)} converges uniformly to f£(t) on I.

PROOF: ILet ® > O be chosen. Divide I into subintervals I.,I I

172°°*°°"m
of equal length such that m 2_55%11 where JI] denotes the length

of I. Let a point ti be selected in each subinterval Ii’ i=1,2,...,m.
1
Then n  may be chosen so large that for n > nj If(ti) - fn(ti)|<§6,

i=l,2,...,m. Choose any t € I. Suppose t € Ii « Then let
o}

n>n.
- 0

t
I A SR (£7(s) - £(s))as] ¢

o

t

< Ik, ) - £ (b )+ (1£7(s)]  + 1£4(s)])as < 5 6 +

- i n'’i n -2

0 o) ti

o

+ 75'2B = 55 + 36 = b.

Hence {fn(t)} converges uniformly to f£(t).

It is desired to approximate solutions to the constrained

optimization problem To this end a new problem 1s considered.
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It is identical to the old unconstrained problem with the single
exception that the cost function C(u) is replaced by
t1 m
Colu) = [ Ip(x(t)) + = n3t,x(6))ud(t) + g%t x(¢)) Jat (3)
o) J=1-

where p is a penalty function for the constralht set G.
THEOREM 1. A new unconstrained optimization problem with cost
functional (3) is considered. p 1s a penalty function of the first
kind for G, 1.e., a member of a sequence of penalty functions of
the first kind. This problem possesses an optimal solution u, x.
PROOF: A proof 1s presented in reference 1.

An analogous theorem for penalty functions of the second kind
is now given.
THEOREM 2. A new unconstrained optimlization problem with cost
functional (3) is considered. p is a penalty function of the
second kind for G. It is further assumed that tlke bounding
hypothesis of Lemma 1 1s satisfied. Then there 1is a solution
U, X to this optimization problem such that X(t) lies entirely
in Int(G) on [to,tl]EZI provided there is any u* e A whose
response x* is known to lie entirely in Int(G) on its domain of
definition [t¥, t¥]=I.
PROOF: There exists a real number M such that Cp(u) > M for all
u € A because of the boundedness of g2(t,x), h?(t,x), u(t) and the
fact that p(x) is non-negative. Because of the hypothesized
existence of u*(t) it may be assumed that M is the largest such
number. If A contains only finitely many functions u(t) there is
a function u(t) e\ such that Cp(ﬁ) = M. Suppose the response X(t)




were such that it met 0G. Then there would be in (Eg,Ei) a
smallest time t (because i'is bounded) such that x(t) € 3G. But
then using the condition (d) %Tposed upon penalty functions of
the second kind we see that f/ p(x(t))dt = + co. But then it
cannot be that CP(E) = M. %o Hence x(t) € Int(G) for
t e [E;,Ei],

It is supposed that A contains infinitely many functions u(t).
A sequence {uk(t)} is selected such that

1im  C_(u,) = M. (4)
k> P K

By Lemma 1, a subsequence {ukz(t)l of {uk(t)l converges weakly

to a function u(t) € A and the responses Xkl(t) converge pointwise
to x(t), uniformly in any compact subinterval of (Eg,fi), where
x(t) is the response to u(t). Moreover defining C{u) by (2),

lim C(u

= C(W). Thus it remains only to show that
L—>®

Kl)
F1i, £

lim J p(x, (¢))at = [ p(x(t))at. (5)
£ 00 tokL L %,

First of all, it is clear from (%) that the sequence
t
lKL
{{ p(x, (t))at}
ok £ '
L
is bounded. It is now claimed that there exists a compact sub-

set DcInt(G) such that for each = 1,2,3,... and each
t e [tokz’tlkll’ ka(t) e D.
It is supposed for contradiction that this were not the case.

Then there is a sequence of times t, such that dis (xk (pL),BG)——DO.
Y
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Since the ?@ all lie within the compact interval I, a sub-
sequence of them, which is still called {QL}, converges to t¥,
Since the ka‘tL) are uniformly bounded in norm by B, a sub-
sequence, still called XKL(té), converges to a point x* ¢ 9G.
Because the derivatives of the Xy  are uniformly bounded, the
sequences{ﬁ(-tokz} and {tlke-tl} are uniformly bounded away from
zero. Thus a natural number4ls and a compact interval [11,12]
can be found such that for £> £, t, € [7,,7,] and

[7y,7, ]C(tokﬂ’tlkj) and algo [11,12 ]c:(’c'o,%‘l). Now since the
derivatives of the ka are uniformly bounded,

1im {xkﬁ(tl)-xk&(t*)} = 0. On the other hand, Iin x t*) = X(t*).

(
L—>00 " Soo Kt
Hence X(t*) = x* ¢ 0G. Then by condition (d) on penalty functions

e
of the second kind, [/ p(x(t))dt = + © and hence, since p is non-

T1
negative
T, _
I p(x(t))dt = + (6)
T
1
(Set p (X(t)) = + @ 1if X(t) € 3G). Now for all £> £  the
T
2
integral [ p(xkl(t))dt is defined and there is a fixed real
T
1

number P > O such that for all such /4
T2
J plx, (t))at < P. (7)
T, g/
Moreover, for each t ¢ [7,,7T,], 1im x, (t) = x(t). Hence,
_ 17727 450 Ky
remembering that p(x(t)) may be + co, for each t € [11,12],
éim p(xk(t)) = p(X(t)) in view of conditions. (a) and (c) on
—>00

penalty functions of the second kind. Hence, Fatou’s Lemma may
T

be applied with inequality (7) to see that [ 2p('i'(t))dt exists and
T
l
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is < P. But this is in contradiction with (6). Therefore there
is a compact set DCInt (G) such that X, (t) always lies in D.
£
But p(x) is bounded for x € D. Applying Lebesgue s dominated
convergence theorem it is seen that
1im [ p(x, (t)) ¢, (t)at = [ 1im [p(x,_ (t))y,(t)]at
I>w0 I ¥ 4 I/500  KeUTE

= [ p(x(e)) Fe)at

(8)

where %Z(t) is the characteristic function of [tOKL’t1KL] and P(t)
is the characteristic function of [Ea,fi]. But then (8) proves

(5) correct. Thus, it has been shown that lim

= ¢ _(u) and
Hn ) p( )

CP(uKé
this completes the proof of Theorem 2.
OPTIMIZATION WITH SEQUENCES OF PENALTY FUNCTIONS

It has been shown that the optimization problem which in-
cludes a penalty function in its cost functional integrand has
a solution. In what follows, sequences of penalty functions, as
defined earlier, are used. It is assumed that the optimization
problem is solved for each such function and now the study proceeds
to study the sequence of solutions thus obtained. Theorem 3
establishes the existence of exact solutions to the constrained
phase coordinate optimization problem as limits of sequences of
such solutions provided (u,x) is approximable (Definition 4) in
the interior of G. Theorem 4 establishes that if the system is
linear, normal, and autonomous and if there is one control that
maintains the system trajectories within the interior of a convex
constraint set, then (u,x) is approximable from the interior.

Theorem 5 proves the existence of a solution to the general bounded
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phase coordinate control optimization problem by means of
sequences of penalty functions of the first kind. In addition,
a discussion of the requirement on approximability from the
interior is given.

Consider therefore sequences {pi(x)} of penalty functions.

For a control u(t) Cpi(u) is defined by
t .
1 m
Cp, (u) = 1{ [p; (x(£)) + g”(t,x(t)) +J21 hg(t,X(t))uJ(t)]dto (9)
o =

For each 1 let ui(t) with response
xi(t), Xi(toi) = Xg» xi(tli) € T(tli) be a solution to the
unconstrained optimization problem with cost functional Cpi(u)°

DEFINITION 4. Let u(t) with response x(t), x(to) = Xg» x(tl) € T(tl),

belong to A. The pair (u,x) is szid to be approximable in the
interior of G on I if there exists a sequence of intervals

}o‘ £y + 5?] C I with lim aé‘ = lim a_ff = 0 and a sequence
K—> 00 K> 00

of pairs (uk,xk), w, € A, xk(t) the response to

[to + B

Ky _ K
uk(t), xk(to + 50) = X_, xk(tl + 61) € T(tl + 57), such that

o)

(a) {pk(t)1 converges weakly to u(t),

() xk(t) converges pointwise to x(t) and uniformly on any
compact subinterval of (to’tl) and xk(t) e Int (G) for
k k]

o’ tl + 6l

t € [to + B
THEOREM 3. Let {pi(x)} be a sequence of penalty functions of either
first or second kind for G. Let ui(t), x;(t) be a solution of the
optimization problem with cost functional Cpi(u) for each i as
described above. Assume Hxi(t)H < B for each i, t. If for each

u(t) € A the corresponding pair (u,x) is approximable in the
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interior of G on I, then there exists a subsequence {ui (t)}
converging weakly to u(t) € A with the responses xik(t)kconverging
pointwise to X(t), uniformly on compact subintervals of (Eé,?i),
and u(t) and x(t) are a solution of the constrained optimization
problem with cost functional C(u).
PROOF: Everything has been proved in Lemma 1 except the statement
that u(t) and x(t) are a solution of the constrained optimization
problem with cost functional C(u).

For contradiction, it is supposed there is a control u(t) € A
such that

c(u) = c(Q) - ¢ (10)

where ¢ 1is a positive real number. Consider a sequence of pairs
(ﬁﬁ, 24) which approximates the pair (u,x) in the interior of G.
Assume that u(t) is defined on the interval [to, t,] and that

% (t) 1s defined on [t_ + 8%, t, + of].
Now
lo) - cpy (&)1 = ’
t
1
I/ {e°(t,x(t)) + nghg(t,x(t))uJ(t)}dt
% +52
- ' o{ %,(t °(t,%, (¢ S n9(¢,%, (£))3d (£) \at |
{ ot pik(xl( )) + g (t,x,(¢)) + JE (e (B )
t,+54
< {o+6§ Iy (% (8))lae + M(Is 1 + 1571) (11)
+ 1 {18%(6,2(8)) - &°(t,8,(6))]
3

" ljgl(h§(t,x(t)) wd(t) - B3(t.%,(6)) W) 1}at
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m
where M is a bound for the function g°(t,x) + = hg’(t,x)u'j valid
=1

- - £ A
for t eI, xeG, ue @, and J, = [to,tl]!?[to + Bo,tl + 61].
Let € = ¢/u, where p 1s a positive integer which will be

fixed later. Let_[o be chosen so that ¢> £O=>
M(16£] + 184]) < e. (12)

Since Qz(t) converges uniformly to x(t) on any compact subinterval
of [to,tl] and go 1s continuous, and hence uniformly continuous

on]ht(G/?{xIHngBl), /. can clearly be chosen so that,l2_51=>

£
[18°(t,x(t)) - &°(¢.%, (t))lat < e (17)
J
Now -
i 2 (r%(t,x(t))ud(t) - nO(t,%, (t)0d(¢) ] at (1)
J. LJ'=1 Jr’ JVL c '

I

L0 E (9Ce,x(6)) (W (8) - (600 Iae
Jo J=1
o L2 S(6x(6)) - BO(6,%, (£))a(6) Nat
JL\J=1 ~

Again using the uniform continuity of hg together with the uniform
convergence of the %L(t) to x(t) on compact subintervals of

[t,,t,] and the boundedness of u(t)}/f2 can be found so that

A> L, =

IR x(t)ﬁ - 19(t,% (£)))Ad(e) 1 Yat < e (15)
{in Pathr R AN b3 }d ’

Since ﬁf(t) converges weakly to u(t) f3 can be found so that EZ(%=>,

ﬁé{'ng (n5(e,x(£)) (I (8) - W(e)))1)at < e. (16)
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Let ,2-.: max {170,21,22,231. Then for Zz_,é\
g
tl+61

'“”'Chg%”iéJu

Ip, (%,(t))lat + ke. (17)
5 k

P A
Since {%l(t)l te [t, + Bg, t, + 6{]}18 a compact subset of Int (G),
€

K_ may be chosen such that k > K => |p (%Z(t))'<
(o] — "0 ik

£_s _gt
(t457-t4-55
Then clearly
Ic(u) - Cpi (ﬁl)l < 5¢ for such k (18)
k
Set p = 10 and
Ic(u) - Cpi (ﬁz)l < q/é for such k. (19)
k
Now clearly for each k
Cp, (u, ) > C(u, ). (20)
ik ik ik
As proved in Theorem 1,
1lim C(ui ) = C(\). Hence (21)
k—>00 k
lim —
00 Cpik (uik) > c(u). (22)

Combining (10), (19), (22) it is clear that k > k  can be chosen
80 large that

Cpik(uik) > Cpik(u ). (23)

But this contradicts the choice of the control u, . Hence (10)
k
is impossible and the control u(t) with its response x(t) is

indeed a solution of the constrained optimization problem. Q.E.D.
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The necessity of the condition of approximability from the
interior of G for penalty functions of the second kind is now
shown by an example. Then it will be shown that there is a
class of problems in which this condition is fulfilled.

Consider the linear autonomous system

X = X, jul <1

(24)

L]

Xy = U

When the Maximum Principle of Pontrjagin is applied it is seen

that the time optimal paths are segments of the parabolas
(x,)2

2

X + C

1 =%

as shown in PFig. 1.
Let G be the shaded region and take X, € Int (G) as shown

in Fig. 2. T = 0, the origin, is the fixed target set. The

optima% trgjectory from X, to T is the arc of the parabola
-(x

Xy = ———g——-between > and 0. It is easily verified that every
solution of (24) for |u| < 1 which or%gingtes at x_ lies on
-(x
2

this parabola or in the region x, > as long as 1t does

1
not cr?ss)ghe line Xy = O. Since a segment of the parabola
-(x

X = 2—5——— forms part of the boundary of G it is clear that

the optimal path from xo to 0 cannot be approximated from the
interior of G. Hence if penalty functions of the second kind were
used to constrain solutions to G the attempt would end in
fallure. Note that, as sketched, there are trajectories from X,
to 0 lying in Int (G) but no sequence of such trajectories

converges to the optimal trajectory.
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The following Lemma is a familiar result from reference 1.
LEMMA 3: Consider the autonomous system
xt = fi(xl,...xn, ul,...um), i=1,2,...,n (s)
where f(x,u) is in C1 in R%™, We consider measurable controls
u(t) lying in a compact, convex subset Q of R™ such that ©
contains the origin in its interior. Let A = %g(qo), B = %%(0,0)
and assume
(a) £(0,0) = 0.
(b) There exists a vector v € R™ such that Bv lies
in no proper invariant subspace: of A. (This is
equivalent to saying that Bv, ABV, A2Bv,...,An'le
are linearly independent.)
Then for every small negative number T there exists a
neighborhood NT of x=0 such that if X, € NT, a control u(t)
may be found such that if x(t) obeys (S) with u = u(t) and
x(T) = X,» then x(0) = 0.
This lemma leads to a theorem giving sufficient conditions
for approximability from the interior for a certain class of

linear autonomous control systems.

DEFINITION 4., Consider the linear autonomous control system

. x=Ax +Bu (25)
The system (25) is called normal if there exists a vector
v ¢ R® such that Bv, ABv,..., A" 1By are linearly independent.
THEOREM 4. Let G be a closed convex subset of R" and 1let %o and
the origin O lile in the interior of G. Let u(t) defined on
[to,tl] be such that the response x(t) with x(to) = x, has

x(t;) = 0 and x(t) € G for t [to,tll. If there is any control
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u(t) defined on [t_,t;] such that the response X(t) with i(to) = X
lies in Int (G) for t € [to,tl] then the pair (u,x) is approximable
from the interior of G.if (1) is a normal linear system.

PROOF: For each natural number k let uk(t) = (1~ %)u(t)+ % u(t),

t e [to,tl]. Let xk(t) be the response to uk(t) with xk(to) = X, .
Now by the varliation of parameters formula

At-t,) . eA(t—to) t -A(s-t_)

x(t) = e X, [ e Bu(s)ds
%o (26)

x(t) = eA(t-to)xo + eA(t-to) fte—A(s-to)Bﬁ(s)ds
L2

and hence A(b-t.) b (
- t-t =-A(s~-t
xk(t) =e ° x, + eA( ° £ e ° o)B[(l-- %)u(s)+% u(s)las (27)
o)

(1 - %) x(t) + § X(t).

Since x(t) ¢ Int (@),x(t) € Int (G) and G is convex, xk(t) € Int (G)
for each k and each t. Now

lim x,(t,) = O. (28)
k—>00 L

Using the fact that ik must be bounded together with Lemma 3 it
can be stated: For each sufficiently large k there exists a
non-negative number Bk such that uk(t) may be defined on

[tyst; + 6,] in such a manner that % (8, + 8,) = 0.

x, (t) € Int (G) for t e [ty.ty + 8.1, and lIx (¢)]l < €, for

t e [tl, ty + ak]. The &, may be chosen so that

lim 6, = lim €, = 0. Since x(t) is uniformly continuous on
k> k—>00

[t,:t;] and ii? x () = x(t) uniformly there and since w, (t) and
—>00
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u(t) are uniformly bounded on [tl,t + Gk] for all k and

1
1lim uk(t) = u(t) uniformly on [to,tl] it is seen that the

5;232nce (uk,xk) defined on the sequence of intervals [to,t1 + sk]
approximates (u,x) from the interior of G and this completes
the proof.

The author is confident that much more general theorems
concerning approximabllity from the interior are actually true.
The proof of this assertion appears at this time to be quite
difficult.

Penalty functions of the first kind which satisfy the

additional requirement:

lim pi(x) = 0, uniformly for x € @ (29)
i=->00

are now considered. A speclal instance of thils situation
occurs when G is described by

G: {xl p(x) = ol (30)
where p(x) is a continuous, non-negative function which is > 0 for
x f G. Then one can take pi(x) = ip(x), thereby obtaining a
sequence of penalty functions of the first kind which satisfy (31).
This approach to the problem of minimizing functionals subject
to constraints is originally due to Courant. (See Refs. 3, 4).
In the supplementary notes to Courant's "Calculus of Variations"
(Ref. 3) the following theorem is proved by Martin Kruskal and
Hanan Rubin:
THEOREM 5 1If
(a) ¢(p) and ¥(p) are lower semi-continuous real valued functions
on a convergence space S (i.e., any space in which a notation of

convergence is defined);
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(b) w(p) > 0 for all p in S and there exist points in S for which
¥(p) = 0;
(c) A denotes the problem: Find a point satisfying the side
condition

y(p) =0
at which ®(p) takes on its least value for all p in S satisfying
the side condition;
(da) A, denotes the problem: Find a point for which ¢(p) + ty(p)
takes on its least value for all p in S; and
(e) There exists a sequence {tn} of positive real numbers, a
sequence {pn} of points in S, and a point Poo in S such that
tn—>oo as n—>oo, Pp solves Atn and pn—>oo as n—oo; then:
Py solves A.
The proof of this theorem is not presented here. In order
to apply it to the present problem the following identifications
are made: S consists of all pairs of functions (u(t), x(t))
defined on I, u(t) € © such that x(t) is the response to u(t)
on I and there are times t_, t; € I with x(to) = X, x(tl) € T (tq),
ix(t)l] < B uniformly. S is taken as a subspace of L2(I) x C(I),
the topology in L2(I) being the weak topology, and in C(I) the
topology of the sup norm. Then the product topology defines
the convergence in S. @(u(t), x(t)) is defined to be C(u), the
integral used in C(u) being taken between to’tl’tl being the
first time x(t) meets T(t) after time t,. It is clear that

®(u(t), x(t)) is continuous with respect to the chosen topology

£ s.
° t

¥(u(t), x(t)) 1s defined to be [ l(p(x(t))dt > 0.
t
o




-21-

Again ¥ is continuous on S since it depends only on x(t) and 1is
continuous in C(I).

The condition that there are points in S for which
v(u(t), x(t)) = 0 is precisely the condition that there is a
u(t) € A such that the response x(t) lles in G for tj < t < t,.
Then Lemma 2 may be used to obtain condition (e) and the
following theorem may be stated as a consequence of Theorem 5.
" THEOREM 6. Let p(x) satisfy (30) and pi(x) = ip(x), p(x) as
defined above. Then Theorem 3 holds for this sequence of penalty
functions without the requirement on approximability from the
interior.

The same result may be proved for sequences of penalty
functions which satisfy equation (29). It is embodied in the
following
THEOREM 7. Theorem 3 holds for a sequence of penalty functions
of the first kind which satisfy (29) without the condition on
approximability from the interior.

PROOF: The proof l1ls the same as that in Theorem 3 with the
functions (qz, 34) being replaced by (u, x).

It 1s clear that Theorem 7 implies Theorem 6 but Theorem 6

is included to show the usefulness of the Kruskal-Rubin

approximation theorem, i.e., Theorem 5,

CONCLUSION
It has been shown that with sultable hypotheses optimal
constrained phase trajectories may be approximated to any desired
degree of accuracy by unconstrained solutions of problems wherein

the cost has been augmented by a penalty function.
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Figure 2, Not Approximable from the Interior

NASA-Langley, 1964 CR-59




